Inteligência artificial pode ajudar no diagnóstico de acidentes vasculares encefálicos; entenda

Redação


Pesquisadores do curso de Medicina da UFPR (Universidade Federal do Paraná) estão desenvolvendo um algoritmo -inteligência artificial- capaz de identificar a probabilidade de existir um acidente vascular encefálico em tomografias de crânio.

A ferramenta auxiliará o médico clínico na conclusão de um diagnóstico mais preciso de forma mais rápida. Nos casos de derrame cerebral, a agilidade é extremamente valiosa, pois o tempo entre o surgimento dos sintomas e o tratamento da doença é um fator determinante para sequelas e para o prognóstico do paciente. 

ACIDENTES VASCULARES ENCEFÁLICOS: O QUE SÃO?

De acordo com a literatura, acidentes vasculares encefálicos são a 3ª maior causa de morte no mundo. O distúrbio é provocado por uma alteração de irrigação sanguínea em uma porção do cérebro e sua evolução depende de uma série de fatores como tempo de falta de fornecimento sanguíneo, área acometida e comorbidades.

O diagnóstico é feito pela correlação entre os sinais clínicos do paciente e seu exame de tomografia computadorizada de crânio. Para interpretar o exame de imagem, o clínico deve ser capaz de delimitar a região afetada de outras regiões saudáveis. 

COMO A INTELIGÊNCIA ARTIFICIAL PODE AJUDAR?

A tecnologia elaborada pelos pesquisadores do Campus Toledo da UFPR funcionará a partir de uma rede neural criada em linguagem de programação e treinada para o reconhecimento de casos da doença em tomografias de crânio. Para isso, os especialistas estão ensinando essa inteligência artificial por meio de banco de imagens coletadas em uma clínica de radiologia.

“Serão apresentadas aproximadamente seis mil imagens à rede neural e, ao fim do treinamento, o modelo fornecerá dados sobre sua precisão, sensibilidade e acurácia”, esclarece Kleber Fernando Pereira, professor do curso de Medicina que atua na área da anatomia. 

Segundo Pereira, o diagnóstico de acidente vascular encefálico por meio de imagens tomográficas pode ser desafiador para o médico devido à dificuldade de diferenciar as estruturas lesionadas de processos anatômicos normais.

“As redes neurais podem servir como auxílio para o diagnóstico, já que utilizam como base para seus cálculos dados extraídos de milhares de outras imagens médicas.”

Inteligência artificial pode ajudar no diagnóstico de acidentes vasculares encefálicos
Medicina UFPR/Campus Toledo

Por meio de uma rede neural convolucional, algoritmo de inteligência artificial que utiliza uma série de neurônios virtuais amplamente interconectados entre si, é possível treinar uma máquina a classificar e a detectar padrões em imagens de forma rápida e automática. Os pesquisadores da UFPR estão utilizando o banco de dados de um centro de radiologia situado no município de Toledo, no Paraná, para realizar a classificação com auxílio de um médico radiologista. 

Serão identificadas estruturas e anormalidades nos exames que, na sequência, serão rotuladas em computador em quatro possibilidades: Acidente Vascular Encefálico (AVE) antigo, AVE novo, não se aplica (traumas, artefatos, tumores, malformações) e dúvida. As dúvidas serão sanadas mensalmente por meio de videoconferência com um médico radiologista voluntário.

Todas as imagens estão acompanhadas de laudo médico oficial para a consulta. Ao final do treinamento, a rede neural emitirá gráficos e tabelas esclarecendo sua sensibilidade e acurácia. 

Previous ArticleNext Article
[post_explorer post_id="804557" target="#post-wrapper" type="infinite" loader="standard" scroll_distance="0" taxonomy="category" transition="fade:350" scroll="false:0:0"]